MATH NEWS

Math Tips for Families

Unit 2: Extending our Understanding of our

 Base Ten System and Place ValueIn second grade, students continue to develop a deep understanding of place value up to 1,000 with a concerted focus on $1 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s . They will become adept at reading and writing numbers using base-ten numerals (537), number names (five hundred, thirty-seven), and expanded form (500+30+7).
They will be dealing with values up through 1,000 and will skip count by 5's, 10's, and 100's. And ultimately, they will also compare three-digit numbers.

(2) Key Terms

Place Value:
4 is less than 5
$4<5$
10 is greater than 8 $10>8$
15 is the same as 15

Number Bond

 Also known as a part-partwhole diagramWhat came before ~ Foundation Skills
In first grade, students developed the concept of place value by viewing 10 ones as a unit and 2 digit numbers as amounts of tens and ones. They also counted tens and by tens ($10,20,30,40,50$, etc.) up to 100.

(3)

Using Questions

\checkmark What do you notice?
\checkmark How many ones, tens, and hundreds are in this number?
\checkmark What is the value of the digit in the tens place? (In 63, it means 6 tens or 60)
\checkmark How many dimes are in 63¢ ?
\checkmark How many pennies are in 636 ?
\checkmark How can we decompose or break apart this number?
\checkmark Look at two different numbers together and ask how do they compare with each other:

- Are they the same?
- Which is more (or less) than the other?
\checkmark Which is more, 2 dimes and a quarter or 4 dimes?
\checkmark Which would you rather have 25 क or 4 nickels? Why?

In How You Can Help

Have students skip count using pennies, nickels, and dimes.
Ask riddles:

- I have 4 tens and 13 ones. Who am I?
- I have 30 ones and 3 hundreds. Who am I?
- I am 45. If I have 25 ones, how many tens do I also have?
- Name a number that is larger than 364.
- Name a number between 457 and 373.
- 63 equals 50 and how much more?

Calculator Challenge Counting

Children press any number on the calculator (for example 17), then +10 . They say the sum before they press =. Then they continue to add 10 mentally, challenging themselves to say the number before they press $=$. Challenge them to see how far they can go without making a mistake.

You could also adjust the numbers to start with a number less than ten (if needed) or greater, such as 98 or 327 if your child is ready.

A fun twist is starting with a larger number and subtracting ten at a time.

Key California Content Standards for this Unit

2. NBT. 3 Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
3. NBT. 4 Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using $\rangle_{,}=$, and < symbols to record the results of comparisons.
2.MD. 8 Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using $\$$ and $\$$ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?
2.NBT. 1 Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases.
g 100 can be thought of as a bundle of ten tens - called a "hundred."
\underline{b} The numbers $100,200,300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).
2.NBT. 2 Count within 1000; skip count by 5's, 10's and 100.
4. NBT. 2 Count within 1000; skip-count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s.
5. NBT. 8 Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.

Supporting community \&
Sources Used in this Newsletter:

- California Mathematics Content Standards
family understanding
- California Mathematics Framework
- Teaching Student Centered Mathematics K-2

